Asynchronous Hosthame
Lookup API

A Proposal

Ulrich Drepper
Red Hat, Inc.

1325 Chesapeake Terrace
Sunnyvale
California

94089
drepper@redhat.com

Computing gets more and more distributed and an increasing number of programs are
able to use resources on other machines by network connections. Connections means
knowing theaddressof the other machine which either can be either in numerical form
(which can be used directly) or the machine’s name. The latter is the much more
common and preferred way and the standard DNS services naaike resolvingn

easy job. With one exception: the lookup might take some time and block the program.

For this reason an asynchronous name lookup API is needed so that the application can
start the lookup when it knows that it needs the information and still can continue doing
its work. It can query the arrival of the lookup results and if they arrived, can use them.

There is currently no standardized interface of this kind in the Unix API. This proposal
intends to fill the gap.

Asynchronous Hostname Lookup API

1. Introduction

The necessity of an asynchronous hostname lookup APl became obvious in the last few
years. Too many programs already have their own, private implementations which are
often horribly crufty since they are designed to be portable. One well-known example

is Netscape’s Communicator browser which starts a separate process to do the lookup.

Therefore the only open question is: how to design the interface? The proposal made in
this paper uses the (to me) logical approach of imitating existing and proven interfaces
as much as possible.

The decisions to be made fall into two categories:

1. The actual lookup interface. There are quite a few interfaces available today
(gethostbyname , gethostbyname2 , getaddrinfo , ...). From these
getaddrinfo is the logical choice since it is designed to replace all other
interfaces since it is designed generally enough to be used for most (all?) network
protocols.

2. The asynchronicity handling. The logical choice here is the AIO (asynchronous
I/0) API, introduced in POSIX-1b. It is proven to be useful and applies to this
situation as well as we will see.

The interfaces described in the remainder of this paper are merging these two interfaces
as far as possible and necessary. We will describe the interfaces in detail but we will
start with a description of the model on which the assumptions about the use of the
interfaces are based. If anything in this model does not match the readers expectations
chances are that the interfaces are not adequate either. | would like to hear about this in
this case.

2. The Asynchronicity Model

To decide about the way asynchronicity is handled we have to find out in what kind of
situation this interface will most likely be used. A few situations come into mind:

Asynchronous Hostname Lookup API

Web browsers

Reading and displaying one HTML/XML document might require a multitude of
other resources (referenced in URLS) and these URLs can contain an equal
amount of different hostnames. These must be resolved as fast as possible,
eventually all at the same time. This is the classic situation.

One specialty of this situation is that the read input text can already be analyzed
while it is read and so the URLs will be determined one after the other. It is a good
idea to start the hostname lookup as soon as possible since it might take a while to
get the result. So there might be multiple hostname lookup requests in the end but
they could have been issued one by one.

Another aspect of the use in web browsers is that the user could cancel the web
page display and therefore make the lookup unnecessary.

Name Service Cache Daemon (NSCD)

The job of the NSCD is to cache the results of requests for future use. The NSCD

IS a program running on the same machine as the using process and therefore fast
inter-process communication can be used to transfer the results. Multiple

programs can query the NSCD at the same time and unless a new thread is created
for each request (which is a bad idea) some requests are not handled immediately.

With asynchronous hostname lookup all requests should be accepted immediately
and queued using the asynchronous hostname lookup function. One thread
(possibly a few more) should receive the requests and transfer them to the process
which made to original query.

Summarizing we can say that programs want to look up one or more hostnames while
doing other things and then when ready work on the requests one by one. Therefore we
need at least the following interfaces:

- an interface to add one or more requests to the list of already outstanding hostname
lookups.

Asynchronous Hostname Lookup API

an interface to query the availability of the result of a request.

an interface to wait for the availability of a specific request or one of a group of
requests.

an interface to cancel the lookup requests.

This leaves the question of how the notification of the arrival of the results should
happen. The POSIX AlO interface provides a set of methods which proved to be useful
and sufficient.

« No explicit notification. This is sometimes a possibility if the results are not really

needed until the current work is done and we have time to ask for finished requests.

POSIX real-time signals (which can carry data) can be sent when the data is
available.

A new thread can be started when the data is available. The user can determine the
function which gets called and its parameters.

With these interfaces the situation of the web browser can be handled as follows:

1. The original web page is loaded.

2. While being loaded, the text is searched for references to other resources. All the
hostnames in URLs found while looking through the loaded part of the document
are queued for lookup using the query interface. Note that the document can arrive
in chunks and therefore the hostnames to look up will be queued in chunks as well.

3. When the current thread is waiting for more data or if a new thread is created to
help handling the current page, the function to ask for or wait for finished requests
can be used. This allows downloading more data in parallel.

4. If the user stops downloading the page all outstanding requests are canceled to not
do any extra work.

Asynchronous Hostname Lookup API

3. API specification

The interfaces of the functions described in this section should incorporate the results
of the previous section. They are reasonably close to existing interfaces to be believed
to be acceptable to many users. The names of the functions and data structures are
subject of review.

<netdb.h>

Name

<netdb.h> — definitions for network database operations

Synopsis

#include <netdb.h>

Description

In addition to the already defined contentsaétdb.h> the following data structure
and function prototypes are be added:

The<netdb.h> header shall define the gaicb structure that includes at least the
following members:

const char *ar_name; /* Host name to look up. */
const char *ar_service; /* Service name. */

const struct addrinfo *ar_request; /* Request attributes. */

struct addrinfo *ar_result; /* Pointer to first

element of result. */

Asynchronous Hostname Lookup API

Mode Selection Values

Thegetaddrinfo_a() function takes in the first parameter a value which describes
when the function returns from the call. There are two symbolic values defined to be
used for this parameter:

GAI_WAIT

The function will not return until all the work is done.

GAI_NOWAIT

The function immediately returns after queueing the requests.

Address Information Errors

The<netdb.h> header shall define the following macros for use as error values for
use as error values fgetaddrinfo() , getaddrinfo_a() , andgetnameinfo()

EAI_AGAIN

The name could not be resolved at this time. Future attempts may succeed.

EAI_BADFLAGS

The flags had an invalid value.

EAI_FAIL

A non-recoverable error occurred.

EAI_FAMILY

The address family was not recognized or the address length was invalid for the
specified family.

EAI_MEMORY

There was a memory allocation failure.

Asynchronous Hostname Lookup API

EAI_NONAME

The name does not resolve for the supplied parameters. NI_ NAMEREQD is set
and the host’'s name cannot be located, or Imottename andservname were
null.

EAI_SERVICE

The service passed was not recognized for the specified socket type.
EAI_INPROGRESS

The asynchronous lookup operation has not yet finished and was not canceled.

EAIL_INTR

The operation was interrupted by a signal.

EAI_CANCELED

The asynchronous request was canceled.

EAI_NOTCANCELED

The asynchronous request was not canceled.

EAI_ALLDONE
Nothing had to be done.

EAI_SYSTEM

A system error occurred. The error code can be fourerito .

Note: Andrew suggested to use the error EAl_SYSTEM and set errno to the
equivalent value instead of using EAl_INPROGRESS, EAI_INTR,
EAI_CANCELED, EAI_NOTCANCELED, and EAI_ALLDONE.

For EAI_INPROGRESS this is probably very wrong since when waiting for
requests code like

struct gaicb reqs[10];

Asynchronous Hostname Lookup API

int i;

for (i = 0; i < 10; ++i)
if (gai_error (&reqs[i]) != EAI_INPROGRESS)
break;

will often be used. Adding a second condition testing errno does not help the
performance and readability.

| also don't think errno is a good choice in the other cases since using global
variables in general, and especially errno , is no good style. All modern interfaces
try to avoid using it.

Additional function prototypes

The following shall be declared as functions, and may be defined as macros.

int getaddrinfo_a(int, struct gaicb *restrict [restrict], int,
struct sigevent *restrict);
int gai_suspend(const struct gaicb *restrict
const[restrict], int,
const struct timespec *restrict);
int gai_error(struct gaicb *);
int gai_cancel(struct gaich *);

Note: For those not familiar with ISO C99, restrict is a new keyword which allows
the programmer to provide the compiler information about aliasing of memory
locations.

Asynchronous Hostname Lookup API

getaddrinfo_a

Name

getaddrinfo_a — asynchronically get address information
Synopsis

#include <netdb.h>
int getaddrinfo_a (int mode, struct gaicb *restrict

list [restrict], int ent , struct sigevent *restrict sig);
Description
Thegetaddrinfo_a() function shall enqueue requests for translations of the names

of service locations (for example, a host name) and/or service name and the return. The
requests will be worked on asynchronically and when finished a set of a socket address
and associated information to be used in creating a socket with which to address the
specified service is made available.

Themode parameter determines when thaddrinfo_a() function returns. If the
value is GAI_WAIT the function returns only after all requests are processedsi@he
parameter is not used in this case and the functionality is similgettaidrinfo()

except that more than one request is processed in one call. This could mean that the
requests are worked on in parallel and therefore the work is done faster than with
individual calls.

In case thenode parameter is GAI_NOWAIT the function returns immediately and the
caller gets informed about handled requests according to the user’s preference

Asynchronous Hostname Lookup API

described in theig parameter.

Thelist parameter is an array of pointers to structures of type gaicb. The structures
elements correspond to the parameters otjthaddrinfo()

ar_name
This field corresponds to the first parametegetddrinfo() which names the
service location.

ar_service
This field corresponds to the second parametgetifddrinfo() which names
the service.

ar_request
This field corresponds to the third parametegetddrinfo() which provides
hints for the lookup process..

ar_result

This firld does not have to be field before calliggtaddrinfo_a() . After a
successful call this structure element contains a pointer to the first element of the
result list.

If an element of the arralyst is a null pointer this entry is ignored. The total number
of elements in the array is specified by the paramenér.

The third parametesig specifies how the calling thread should be notified in case a
request is handled. #ig is null, then no asynchronous notification shall occusidf

is not null, asynchronous notification occurs as specified in Section 2.4.1 (on page
xxx). The notification is done for each handled request separately.

Note: Is this the best solution? | think yes since you normally want to start a
single action with each resolved address and don’t need to wait until everything is
done. This is differently from AIO.

10

Asynchronous Hostname Lookup API

If this is agreed to be the best solution, should the data send at termination
though a signal or the parameter passed to the newly started thread point to the
request? Otherwise the receiver will have to search for the available result. The
latter is not a big problem and is done elsewhere as well.

Note: Another unclear thing is inherited from the lio_listio() function on which
the proposal for this function is based. The POSIX standard does not describe
what has to happen to the structure pointed to by sig after the lio_listio() (or
in this case getaddrinfo_a()) function returns. Can it be modified? Must it be
accessible at all (this is a problem if sig points to an automatic variable).

For now we leave it unspecified just like the POSIX standard does. This IMO
implies that the getaddrinfo_a() implementation must copy the structure before
returning to ensure it can use it later.

Return Value

If the all requests in arrayst were enqueued successfully deaddrinfo_a()
function return zero. Otherwise it returns an error value and sets the error status of the
gaicb appropriately so that it can be queried vgidéh error()

Errors

Thegetaddrinfo_a() function shall fail if:

EAI_EAGAIN

The resources necessary to queue all the lookup requests were not available. The
application may check the error status for each gaicb to determine the individual
request(s) that failed.

11

Asynchronous Hostname Lookup API

EAI_MEMORY

The memory to process the request(s) could not be allocated.

gai_suspend

12

Name

gai_suspend — Suspend execution until a request result is available
Synopsis

#include <netdb.h>
int gai_suspend (const struct gaicb *restrict const

list [restrict], int ent , const struct timespec *restrict
timeout);
Description

Thegai_suspend() function shall suspend the calling thread until at least one of the
asynchronous lookup requests referenced byishe parameter which were

previously queued by a call tgetaddrinfo_a() has completed, until a signal
interrupts the function, or, timeout is not null, until the time interval specified by
timeout has passed. If any of thgaicb structures in list corresponds to completed
asynchronous lookups (that is, the error status for the lookup is not equal to
EAI_INPROGRESS) at the time of the call, the function shall return without

Asynchronous Hostname Lookup API

suspending the calling thread. Tl argument is an array of pointers to
asynchronous lookup control blocks. Téiet parameter indicates the number of
elements in the array. Each gaicb structure pointed to had been used in initiating an
asynchronous lookup request getaddrinfo_a() . The array may contain null
pointers, which are ignored. If this array contains pointers that refer to gaicb structures
that have not been used in submitting asynchronous lookups, the effect is undefined.

If the time interval indicated in the timespec structure pointed tarogout passes
before any of the lookup requests referencedisty are completed, then
gai_suspend() shall return with an error. If the Monotonic Clock option is
supported, the clock that shall be used to measure this time interval shall be the
CLOCK_MONOTONIC clock.

Return Value

If the gai_suspend() function returns after one or more asynchronous lookup
requests have completed, the function shall return zero. Otherwise, the function shall
return one of the values described in the Errors section.

The application may determine which asynchronous lookup request have completed by
scanning the associated return status ugéigerror()

Errors

Thegai_suspend() function shall fail if:

EAI_AGAIN

No asynchronous lookup indicated in the list referencetidty completed in
the time interval indicated biymeout

EAI_ALLDONE

This value is returned if there is no non-null entry in the array pointed tsby

13

Asynchronous Hostname Lookup API

or if ent is zero.

EAIL_INTR

A signal interrupted thgai_suspend() function. Note that, since each
asynchronous lookup request may possibly provide a signal when it completes,
this error return may be caused by the completion of one (or more) of the very
lookup requests being awaited.

gai_error

Name

gai_error — Get status of lookup request

Synopsis

#include <netdb.h>
int gai_error (struct gaicb * req);

Description

Thegai_error() function lets the user query the status of the request.

14

Asynchronous Hostname Lookup API

Return Value

Thegai_error() function returns EAl_INPROGRESS is the request is not finished

yet. It returns EAI_CANCELED if the requests was explicitly canceled by a call to
gai_cancel(). In all other cases the return value reflects a finished handling of the
request. A zero return value means the request was handled successfully. Otherwise one
of the return values listed in the Errors section is returned.

Errors
Thegai_error() function shall return the following values in case of an not or

unfinished request:

EAI_INPROGRESS

The request is not yet completely handled.

EAI_AGAIN

The name could not be resolved at this time. Future attempts may succeed.

EAI_BADFLAGS

Thear_flags element had an invalid value.

EAI_FAIL

A non-recoverable error occurred when attempting to resolve the name.

EAI_FAMILY

The address family was not recognized.

EAI_MEMORY

There was a memory allocation failure when trying to allocate storage for the
return value.

15

Asynchronous Hostname Lookup API

EAI_NONAME
The name does not resolv for the supplied values.

Neitherar_name norar_service values were supplied. At least one of these
shall be supplied.

EAI_SERVICE

The service passed was not recognized for the specified socket type.

EAI_SOCKTYPE

The intended socket type was not recognized.

EAI_CANCELED

The request was explicitly canceled with a calytd _cancel() before it could
be finished.

EAI_SYSTEM

A system error occurred; the error code can be foursrimo .

gai_cancel

Name

gai_cancel — Cancel an asynchronous name lookup request

16

Asynchronous Hostname Lookup API

Synopsis

#include <netdb.h>
int gai_cancel (struct gaicb * gaicbp);

Description

Thegai_cancel() function shall attempt to cancel an asynchronous lookup request
currently outstanding. Thgaicbp parameter points to the asynchronous lookup
control block for a particular request to be canceled.

Normal asynchronous notification shall occur for asynchronous lookup operations that
are successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process shall take place for those requests when they are
completed.

For requested operations that are successfully canceled, the associated error status shall
be set to EAl_CANCELED. For requested operations that are not successfully
canceled, thgaicbp shall not be modified bgai_cancel.

In case the parametgraicbp is a null pointer all outstanding requests are tried to be
canceled. The status of each request can be queriedavitérror

Note: We allow a null pointer argument only because of symmetry with the
aio_cancel function. Is it worthwhile? Should the semantics be modified to say
all requests the current thread issued?

Note: It might be useful to allow canceling of a number of requests at the same
time (by passing an array pointer and the number of elements, just as in
getaddrinfo_a()). Is it worthwhile diverging from the AIO interface?

17

Asynchronous Hostname Lookup API

Return Value

Thegai_cancel() function shall return the value EAl_CANCELED to the calling
process if the requested lookup were canceled. The value EAIl_NOTCANCELED shall
be returned if the requested operation cannot be canceled. The value EAl_ALLDONE
is returned if the lookup already completed. Otherwise, the functin shall return -1 and
seterrno to indicate the error.

Errors

No errors are defined.

4. Implementation

18

An implementation of these functions can be done very differently. The simplest
implementation simply creates a thread for each queued request and has it perform the
lookup. Cancelation can be done by canceling the thread. Somewhat more sophisticated
implementations could keep a thread pool and reuse threads where possible.

But there is no need to implement the operations using threads (at least not multiple
threads). In the case of DNS lookup one thread could handle the traffic for multiple
connections to the DNS server and receive and handle the incoming results. This would
be a very efficient way of implementation. If the number of threads handling the input
gueue is scaled to match the number of available processors it would mean that all
requests are handled immediately if this is possible.

Asynchronous Hostname Lookup API

Such an implementation is very difficult, though, if the name lookup does not involve a
single service like DNS. The NSS system deployed in many OSes has to handle an
arbitrary amount of services and doing all this with one thread for all requests would
prove to be hard or impossible. Therefore a mixed model should be designed.

The basis for this proposal is a working implementation. It proved to be useful in some
preliminary tests.

5. Application Usage

To show the flexibility of the interface here are a few code fragments showing possible
applications. The are only examples, they do not include error checking and the
implementation of the functions doing the real work. But you should get the idea.

5.1. Using threads to do some work

Assume a web browser which wants to load an image. This can be very well done in an
extra thread.

struct pnginfo { O
struct gaicb req;
const char *url;

J#

static void *load_png (void *arg) O
{
struct pnginfo *png = (struct pnginfo *) arg;
load_png (png->req.ar_result, url);
while (png->reg.ar_result !'= NULL) {
struct addrinfo *oldp = png->req.ar_result;
png->reqg.ar_result = png->req.ar_result->ai_next;
freeaddrinfo (oldp);
}

19

Asynchronous Hostname Lookup API

free (arg); O
return NULL;
}
pthread_attr_t attr; O
{
if (... this is a PNG URL ..)
{
struct pnginfo *newp = malloc (sizeof (*png)); O
struct sigevent sigev;
newp->reg.ar_name = url_hostname (url); O
newp->req.ar_service = NULL; g
newp->reg.ar_request = NULL; 0
newp->url = url;
sigev.sigev_notify = SIGEV_THREAD; O
sigev.sigev_value = newp; O
sigev.sigev_notify_function = load_png; O
sigev.sigev_notify_attributes = &attr; g
getaddrinfo_a (GAI_NOWAIT, &newp, 1, &sigev);
}
}

[0 This is the data structure to pass information to the newly started thread. In this case
it is the URL together with the information about the resolved name.

[0 This is the function which handled the request once the hostname is resolved. It
only has to open a socket with the information contained in
*png->req.ar_result

Note that any error checking is missing. The request might have failed and no host
information is available.

20

Asynchronous Hostname Lookup API

[0 The memory for the request data can be allocated for the request and will be freed
in the thread.

(0 Here we fill out the request information. Only the name is given in this case.

Here we fill in the data which tells thgetaddrinfo_a() function to start a
thread. The information includes the thread function and the data we pass.

(0 This is the attribute object used when generating the thread. Normally the thread
should be created in the detached start so that it can work independently from
anybody else.

5.2. Multiple enqueue calls

As mentioned in the description of tigetaddrinfo_a() interface it is possible to
gueue requests individually.

struct gaicb regmem|[N], *req[N];
int err, cnt = 0O;

/* ... fill out regmemicnt] ... */

reqcnt] = regmem]cnt];

err = getaddrinfo_a (GAI_NOWAIT, &req[cnt], 1, NULL); O
++cnt;

f* ... fill out regqmemicnt] ... */

reqlcnt] = regmemicnt];

err = getaddrinfo_a (GAI_NOWAIT, &reqg[cnt], 1, NULL); O
++cnt;

/* Wait for results. */
while ((err = gai_suspend (req, cnt, NULL)) O
I= EAI_ALLDONE)

{

21

Asynchronous Hostname Lookup API

/* ... Find index and handle a request ... */
reqindex] = NULL;
}

The first request is queued.

The second request is queued. Note that the pointers to the two filled out entries are
adjacent in theeq array.

[0 Now we are ready to handle the lookup results. This is done be simply waiting for
all the queued entries at once. It is not uncommon that later queued requests
complete first.

5.3. Possible Inner Loop of a Web Browser

Since we already mentioned a web browser as one of the places where this new
interface can be used we provide here a skeleton a possible inner loop. The task is to
handle multiple incoming connections (for the input file and all its dependencies) and
at the same time perform name lookups.

int new_name;

void sighandler (int sig) { O
new_name = 1,
}
{
struct gaicb reqs[10]; O
struct sigevent sigev = { O
.sigev_notify = SIGEV_SIGNAL,
.sigev_signo = SIGRT1
¥
struct sigaction sa = { O

22

Asynchronous Hostname Lookup API

.sa_handler = sighandler,
sa_flags = 0 /* Note: not SA_RESTART *
2

sigemptyset (&sa.sa_mask);

/* Install signal handler. */
sigaction (SIGRT1, &sa, NULL); O

while (1) {
/* Wait until data is available or interrupted
by a signal. */
int n = poll (fds, nfds, 0); O

/* See whether any name got resolved. We can come
here even if no stream has input (i.e., n == 0)
since we are using signals from notification for
finished lookups. This causes poll() to return
with errno == EINTR. */
if (new_name != 0) {
int i;
. search for a finished request and initiate a
a connection based on the information ...

}

if (n 1= 0) {
. read from descriptors ...

if (read text contains a URL) {
int idx = find_free_req_idx (); 0
reqgsfidx].ar_name = ... name from URL...
reqslidx].ar_service = htons (80); /* HTTP port */
reqgsfidx].ar_request = NULL;

getaddrinfo_a (GAI_NOWAIT, &reqs[idx], 1, &sigev);

23

Asynchronous Hostname Lookup API

24

This is the signal handler. We just set a flag that wpalf) returns (which
happens right after the signal handler returns) the flag is set and we can use the
name.

This is the array with the requests. This will probably have to be dynamic in size in
a real implementation.

All requests are reported using the same mechanism: with a signal send. We
initialize a sigevent struct, a sigaction structure, and set usgagtion() the
signal handler for later use.

Thispoll() call serves two purposes. First, we track multiple incoming
connections. This could be the different files making up a web page.

But unless the SA_RESTART flag is set for the signal handtgi) returns with
an EINTR error if a signal is delivered. This is what we use here. After SIGRT1 is
delivered gighandler() is called)poll() returns with the value zero.

This is where we recognize newly resolved names and start using them.

If the test read for the web page contains a reference to another entity (e.g., an A
link in a HTML document) we initiate here a new lookup request.

